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Abstract. Within the replica framework we study analytically the instance space of the number
partitioning problem. This classic integer programming problem consists of partitioning a sequence
of N positive real numbers {a1, a2, . . . , aN } (the instance) into two sets such that the absolute value
of the difference of the sums of aj over the two sets is minimized. We show that, regardless of the
distribution of the instance entries, there is an upper bound αcN to the number of perfect random
partitions (i.e. partitions for which that difference is zero). In particular, in the case where the two
sets have the same cardinality (balanced partitions) we find αc = 1

2 . Moreover, in the case of
unbalanced partitions, we show that perfect random partitions exist only if the difference between
the cardinalities of the two sets scales like mN1/2, where m is of the order of 1.

1. Introduction

Most statistical mechanics analyses of combinatorial optimization problems have concentrated
on the characterization of average properties of the minima of a given cost function [1, 2].
Usually, the cost function depends on a large set of fixed parameters, termed the instance of
the optimization problem (e.g. the distances between cities in the celebrated travelling salesman
problem (TSP)) which, within the framework of statistical mechanics, are treated as quenched
random variables distributed according to some known probability distribution. Furthermore,
in order to consider the subspace of configurations with a given average cost, one defines
a probability distribution on the space of configurations (e.g. the N !/2N different tours or
ordering of the cities in the TSP), namely, the Gibbs distribution with ‘temperature’ T = 1/β.
The zero-temperature limit then singles out the configurations that minimize the cost function
(ground states). Clearly, in this formulation the configurations are treated as fast, annealed
variables.

Instead, in this work we explore the opposite viewpoint, namely, given a set of
configurations we want to characterize the subspace of instances for which those configurations
have a certain cost. The situation here is similar to the physics approach to neural networks. In
a first stage, attention was given to the neural dynamics, while the coupling strengths between
neurons were kept fixed according to some variant of the Hebb learning rule [3, 4]. (The neural
dynamics itself can be viewed as a versatile heuristic in which the optimization problem is
embedded in the neural couplings [5].) In the second stage which followed the seminal work of
Gardner [6, 7], the focus was on the characterization of the couplings distribution that ensures
the stability of a given set of neural states. Gardner’s formulation allowed a rich interchange
of concepts and methods between the statistical physics and the computational learning theory
communities [8].
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The specific optimization problem we consider in this paper is the number partitioning
problem (NPP) [9, 10] which has received considerable attention in the physics literature
recently [11–13]. It is stated as follows. Given a sequence of N positive real numbers
a = {a1, a2, . . . , aN } (the instance), the NPP consists of partitioning them into two disjoint
sets A1 and A2 such that the difference∣∣∣∣ ∑

aj∈A1

aj −
∑
aj∈A2

aj

∣∣∣∣ (1)

is minimized. Alternatively, we can search for the Ising spin configurations s = {s1, . . . , sN }
that minimize the cost function

E (s) =
∣∣∣∣

N∑
j=1

aj sj

∣∣∣∣ (2)

where sj = 1 if aj ∈ A1 and sj = −1 if aj ∈ A2. Despite its simplicity, the NPP was shown to
belong to the NP-complete class, which basically means that there is no known deterministic
algorithm guaranteed to solve all instances of this problem within a polynomial time bound
[1].

In the proposed framework, we aim to characterize the subspace of instances {a} for which
the fixed set of partitions {sl}l = 1, . . . , P , are perfect, i.e. E

(
sl
) = 0 ∀l. To achieve this we

define the energy in the instance space as

H (a) =
P∑
l=1

(
1√
N

N∑
j=1

aj s
l
j

)2

(3)

so that the P partitions are perfect only if H = 0. Henceforth we will assume that P increases
linearly with N , i.e. P = αN . In addition, we will assume that the components slj are
statistically independent random variables drawn from the probability distribution

P (slj ) = 1

2

(
1 +

m√
N

)
δ
(
slj − 1

)
+

1

2

(
1 − m√

N

)
δ
(
slj + 1

)
(4)

where the weights of the Dirac delta functions are chosen so that 〈slj 〉 = m/
√
N . The motivation

for this choice is twofold. First, the exhaustive search in the Ising configuration space for
N � 26 as well as the analytical solution of the linear relaxation of the NPP indicate that the
average difference between the cardinalities of sets A1 and A2,

m̂ =
N∑
j=1

sj (5)

scales like N1/2 for large N [13]. Second, the scaling of the bias in the distribution (4) yields
a non-trivial thermodynamic limit, N → ∞, for the average free-energy density associated
with the Hamiltonian (3). Of course, for any realistic instance a the different components si of
a perfect partition are probably not statistically independent, i.e. the perfect partition s is not
random. Restricting the analysis to random partitions is a concession we must make in order to
tackle the problem analytically. A similar arbitrary assumption is made in the ‘direct’ approach
where the components ai are chosen as random independent variables [9, 11, 12]. However,
in the concluding section we will comment on the relevance of our results to non-random
partitions as well.

In this paper we will apply standard statistical mechanics techniques to study analytically
the ground states of the Hamiltonian (3). We concentrate our analysis on the zero-energy
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instances (i.e. instances for which perfect random partitions exist) only, since the properties of
the non-zero energy instances depend strongly on the rather arbitrary choice of the energy (3).
Moreover, perfect random partitions are important from a practical viewpoint as they may have
code-breaking implications [14] and so it may be of interest to estimate the maximum number
of those partitions that can be encoded in an arbitrary instance, as well as to characterize those
instances that maximize the number of coded perfect random partitions.

The rest of this paper is organized in the following way. In section 2 we use the replica
method to evaluate the average free-energy density in the thermodynamic limit and to derive
the replica-symmetric order parameters that describe the statistical properties of the instance
space. In particular, we show that there is a critical value, αc(m)N , which limits the number of
perfect random partitions. Also in that section, we study the stability of the replica-symmetric
solution with respect to replica symmetry breaking and show that the zero-energy instances
can reliably be described by the replica-symmetric order parameters. In section 3 we calculate
the probability density for a given entry, say ak , to have value a. This is achieved by integrating
the joint probability distribution (the Gibbs distribution) over all entries except ak . Finally, in
section 4 we present some concluding remarks.

2. Replica approach

Following the standard prescription of performing quenched averages on extensive quantities
only [2], we define the average free-energy density f as

−βf = lim
N→∞

1

N
〈lnZ〉 (6)

where

Z =
∫ ∞

0

∏
j

daj δ

(
R − 1

N

∑
j

aj

)
e−βH(a) (7)

is the partition function and β = 1/T is the inverse temperature. Taking the limit T → 0 in
equation (7) ensures that only the instances that minimize H (a) will contribute to Z. Here
〈· · ·〉 denotes the average over the partitions sl (l = 1, . . . , P ). The constraint on the mean of
the instance vector is needed in order to exclude the trivial solution a = 0. Fortunately, the
arbitrary parameter R does not play a relevant role in the theory, giving only the scale of the
order parameters of the model.

At this point we note that, in the neural networks context, this problem is identical to that
of determining a vector of N neural couplings a that is orthogonal to all P binary patterns
sl , i.e. a · sl = 0 ∀l, which contrasts with the usual stability requirement in that context,
namely, a · sl > 0 ∀l [6–8]. Interestingly, the problem of minimizing the Hamiltonian (3)
subject to a fixed mean R but with ai limited to the simplex [0, 1] was investigated so as
to improve the storage performance of analogue attractor neural networks by reducing the
interference between stored patterns [15]. In addition, the disordered model considered here
may be viewed as a variant of the model of replicators with random interactions studied by
Diederich and Opper [16] (see also [17]) in which the fitness functional is given by

H (a) =
∑
ij

Jij aiaj (8)

with the couplings given by the Hebb rule Jij = 1
N

∑P
l sli s

l
j [3]. In this sense, the statistical

mechanics analysis of the Hamiltonian (3) does not present any new technical difficulty, and
so we will only sketch it in the following.
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As usual, the quenched average in equation (6) is evaluated through the replica method:
using the identity

〈lnZ〉 = lim
n→0

1

n
ln
〈
Zn
〉

(9)

we first evaluate 〈Zn〉 for integer n and then analytically continue to n = 0. Using standard
techniques [7] we obtain, in the thermodynamic limit

−βf = lim
n→0

1

n
extr

{
R2

2

∑
ρ

QρQ̂ρ − R2
∑
ρ<δ

qρδq̂ρδ + R
∑
ρ

R̂ρ

+α lnG1
(
qρδ,Qρ

)
+ lnG2

(
q̂ρδ, R̂ρ, Q̂ρ

)}
(10)

where

G1 =
∫ ∞

−∞

∏
ρ

dx̃ρ√
2π

exp

[
−1

2

∑
ρ

(
1 + 2βR2Qρ

)
x̃2
ρ − 2βR2

∑
ρ<δ

x̃ρ x̃δqρδ

+im
√

2βR2
∑
ρ

x̃ρ

]
(11)

and

G2 =
∫ ∞

0

∏
ρ

daρ exp

(
−1

2

∑
ρ

Q̂ρa
2
ρ +

∑
ρ<δ

q̂ρδaρaδ −
∑
ρ

R̂ρaρ

)
. (12)

The extremum in equation (10) is taken over all saddle-point parameters
(
q̂ρδ, R̂ρ, Q̂ρ, qρδ,Qρ

)
.

The physical order parameters

qρδ =
〈

1

NR2

N∑
i=1

〈
a
ρ

i

〉
T

〈
aδi
〉
T

〉
ρ < δ (13)

and

Qρ =
〈

1

NR2

N∑
i=1

〈(
a
ρ

i

)2 〉
T

〉
(14)

measure the overlap between a pair of different equilibrium instances aρ and aδ , and the
overlap of an equilibrium instance aρ with itself, respectively. Here, 〈· · ·〉T denotes a thermal
average.

2.1. Replica-symmetric solution

To proceed further we make the replica symmetric ansatz, i.e. we assume that the values of the
order parameters are independent of their replica indices

qρδ = q and q̂ρδ = q̂ ∀ρ < δ

Qρ = Q and Q̂ρ = Q̂ ∀ρ
R̂ρ = R̂ ∀ρ.

(15)
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Evaluation of equations (11) and (12) with this ansatz is straightforward. In order to write
the replica symmetric average free-energy density it is convenient to introduce the new
variables

η = R2
(
Q̂ + q̂

)
τ = R̂√

2
(
Q̂ + q̂

) θ = q̂

2
(
Q̂ + q̂

) (16)

and rescale the temperature β ′ = βR2 so that

− β ′

R2
frs = 1

2
ln

(
πR2

2

)
+

1

2
η [Q − 2θ(Q − q)] + τ

√
2η

−α

2
ln
[
1 + 2β ′(Q − q)

]− β ′α
m2 + q

1 + 2β ′(Q − q)

−1

2
ln η +

∫ ∞

−∞
Dz ln

(
e(

2
z erfc(z

)
(17)

where

(z = τ + zθ1/2 (18)

and

Dz = dz√
2π

e−z2/2 (19)

is the Gaussian measure. Thus it is clear from equation (17) that the parameter R yields the
scales of the temperature and free energy, not affecting in any significant way the physical,
replica-symmetric order parameters

q =
〈

1

NR2

N∑
i=1

〈ai〉2
T

〉
(20)

and

Q =
〈

1

NR2

N∑
i=1

〈
a2
i

〉
T

〉
. (21)

The replica-symmetric average energy density εrs = ∂ (βfrs) /∂β is given by

εrs/αR
2 = q + m2

[1 + 2β ′(Q − q)]2 +
Q − q

1 + 2β ′(Q − q)
(22)

which vanishes in the limit β ′ → ∞ provided that q < Q. As justified in section 1 we will
focus on this limit only. After some algebra, the saddle-point equations in this limit are written
as

θ = q + m2

2(Q − q)
(23)

η = α

Q − q
(24)

τ =
√
Q − q

2α

(
1 − α +

αm2

Q − q

)
(25)
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Figure 1. Average variance Q−q of the zero-energy instance entries as a function of α for m = 0,
0.5, 1, 1.5, 2 and 3. The value of α at which the variance vanishes (αc) gives an upper bound to
the number of perfect random partitions.

√
2η = −2τ +

2√
π

∫ ∞

−∞
Dz

exp
(−(2

z

)
erfc(z

(26)

η(Q − q) = 1 − 1√
πθ

∫ ∞

−∞
Dz z

exp
(−(2

z

)
erfc(z

(27)

with (z given by equation (18). In general, these equations can be solved numerically only.
In figures 1 and 2 we present the dependence of Q − q and q, respectively, on α for different
values of m. For α = 0 we find Q − q = q = 1, θ = (1 + m2)/2, and η = 0, while τ

diverges like 1/
√

2α. According to the physical meaning of the order parameters given in
equations (20) and (21), the difference Q − q measures the average variance of the zero-
energy instance entries: the larger this difference, the larger the dispersion of the instance
entries. Interestingly, for fixed m > 0 this variance reaches its maximum for α > 0. The
divergence of the order parameters Q and q (and of their difference as well) for m → ∞ and
α �= 0 is expected, since in order for an extremely unbalanced partition to become a perfect
partition there must exist some very large entries to compensate for the much larger number
of entries in one of the sets. Moreover, we observe from figure 1 that for fixed m there is a
value of α = αc at which the overlap between two zero-energy instances q equals its maximal
value Q. This result signals the shrinking of the zero-energy instance subspace to instances
differing from a microscopic number of entries aj only. Besides, it gives the limit of existence
of the solutions with zero-energy: for α > αc there are no zero-energy instances. Taking the
limit q → Q in the saddle-point equations (23)–(27) yields

αc = 1 −
∫ ∞

−+

Dz (28)
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Figure 2. Average overlap q between two different zero-energy instances as a function of α for
m = 0, 0.5, 1, 1.5, 2 and 3. The curves end at α = αc .

where

+ =
(

αcm
4

Qc + m2

)1/2

(29)

is the solution of

+

m2
=
∫ ∞

−+

Dz (z + +) − +. (30)

Here Qc denotes the order parameter Q evaluated at αc. For m = 0 we can solve these
equations analytically: we find that + vanishes like m2/

√
2π and so αc = 1

2 and Qc = π . In
figures 3 and 4 we show αc and Qc, respectively, as functions of m. The dependence of αc on
m corroborates the statement made in section 1 that perfect random partitions exist only if the
difference between the cardinalities of the two sets scales as mN1/2, since αc vanishes very
rapidly with increasing m.

2.2. Stability analysis

The condition for local stability of the replica-symmetric saddle point is given by [7]

αγ1γ2 � 1 (31)

where γ1 and γ2 are the transverse eigenvalues [18] of the matrices of second derivatives
of G1 and G2 with respect to qρδ and q̂ρδ , respectively, evaluated at the replica-symmetric
saddle-point. After some algebra we find that condition (31) reduces to

α [η(Q − q)]−2
∫ ∞

−∞
Dz

(
a2 − a2

)2
� 1 (32)
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Figure 3. Instance independent upper bound to the number of perfect random partitions αc as a
function of the parametermwhich measures the unbalance of the partitions. For balanced partitions
(m = 0) we find αc = 1

2 .

Figure 4. Average overlap of a zero-energy instance with itself calculated at αc as a function of m.
For balanced partitions (m = 0) we find Qc = π .

where

an =
∫∞

0 da an exp
(− 1

2a
2 − a

√
2(z

)
∫∞

0 da exp
(− 1

2a
2 − a

√
2(z

) . (33)
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Taking the limit q → Q we can easily show that

η(Q − q) → αc (34)

and ∫ ∞

−∞
Dz

(
a2 − a2

)2
→ αc (35)

with αc given by equation (28), so that the left-hand side of equation (32) equals 1 at α = αc.
In addition, we have verified numerically that this stability condition is always satisfied for
α < αc.

3. Probability distribution of entries

The traditional probabilistic approach to study optimization problems introduces a probability
distribution over the space of instances. The main objection to this approach is that one rarely
knows what probability distribution is realistic. In the NPP, for instance, it is usually assumed
that the entries ak are statistically independent random variables distributed uniformly in the
unit interval [9–11]. In this section we calculate analytically the distribution of probability
that a certain entry, say ak , of a zero-energy instance assumes the value a, defined by

Pk(a) = lim
β→∞

〈〈δ (ak − a)〉T 〉

= lim
β→∞

〈
1

Z

∫ ∞

0

∏
j

daj δ

(
R − 1

N

∑
j

aj

)
δ (ak − a) e−βH(a)

〉
(36)

where Z and H are given by equations (7) and (3), respectively. As all entries are equivalent
we can write Pk(a) = P(a) ∀k. Hence to evaluate equation (36) we introduce the auxiliary
energy

Haux (a) = H (a) + h
∑
k

δ (ak − a) (37)

so that

P(a) = − lim
β→∞

1

Nβ

∂〈lnZaux〉
∂h

∣∣∣∣
h=0

(38)

where Zaux is the partition function (7) with H replaced by Haux. Of course, we note that the
entries (a1, . . . , aN) are not statistically independent and their joint probability distribution is
simply the Gibbs probability distribution

W (a) = 1

Z
exp [−βH (a)]. (39)

As expected, equation (36) is recovered by integrating this joint distribution over aj for all
j �= k and then setting ak = a. Using equation (38) the calculations needed to evaluate P(a)

become analogous to those used in the evaluation of the free-energy density (10). Within the
replica-symmetric framework and in the limit β → ∞ with q < Q the final result is

P(a) =
√

2η

πR2

∫ ∞

−∞
Dz

1

erfc(z

exp

[
− η

2R2
a2 − a (z

(
2η

R2

)1/2

− (2
z

]
(40)

for a � 0. Setting α = 0 it reduces to

P(a) = 1

R
exp

(
− a

R

)
a � 0. (41)
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Figure 5. Probability distribution of the zero-energy instance entries for balanced random partitions
(m = 0) and α = 0, 0.4, 0.45 and 0.48.

To handle a possible singularity in the limit q → Q it is more convenient to consider instead
the cumulative distribution function defined by

C(a) =
∫ a

0
da′ P (a′)

= 1 −
∫ ∞

−∞
Dz

erfc
[
(z + a

(
η/2R2

)1/2 ]
erfc(z

. (42)

Taking the limit q → Q yields

Cc(a) = 1 − 1

2
erfc

[
+√

2

(
1 +

a

Rm2

)]
(43)

where αc and + are given by equations (28) and (30), respectively. The interesting feature of
this distribution is that Cc(0) is non-zero, thus indicating that the probability distribution (40)
evaluated at α = αc has a delta peak in a = 0. Explicitly,

Pc(a) = Cc(0) δ(a) +
dCc
da

a � 0 (44)

which for m = 0 reduces to

Pc(a) = 1

2
δ(a) +

1√
4πR2

exp

(
− a2

4R2

)
a � 0. (45)

In figure 5 we show the probability distribution function P(a) for m = 0 and several values
of α. For α < 0.3 the distribution is similar to the exponential distribution (41) obtained for
α = 0. We note that the delta peak at a = 0 appears only for α = αc.
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4. Conclusion

While the traditional approach of computer science to the validation of combinatorial search
algorithms focuses almost exclusively on the instance space (e.g. the worst-case analysis is
basically a search for instances that give the poorest performance of the algorithm under
study [1]), the statistical mechanics approach has concentrated mainly on the configuration
space, with the instances being drawn from arbitrary probability distributions [2]. Building
on the work of Gardner on neural networks [6, 7], we illustrate in this paper the usefulness of
equilibrium statistical mechanics tools to investigate the statistical properties of the instance
space as well. For the optimization problem we have considered, namely, the number
partitioning problem, we have searched the instance space for the best (easiest) instances
to show that there is a maximum number of uncorrelated perfect partitions, αc(m)N (see
figure 3). In particular, for balanced partitions (m = 0) we find αc(0) = 1

2 . Clearly, this result
yields an upper bound to the number of perfect random partitions that can be found for any
arbitrary instance. Moreover, in the case of unbalanced random partitions, we have shown
that zero-energy instances exist only if the cardinalities difference

∑
i si scales like mN1/2.

These results have obvious relevance to cryptography [14] since they yield upper bounds to
the number of uncorrelated coded binary messages (i.e. the perfect random partitions) that can
be encoded in an arbitrary instance. Of particular interest in this context is the probability
distribution of the zero-energy instance entries (see figure 5) since its shape may give a clue
to the number of encoded patterns (α) in the instance.

To conclude, some remarks on the relevance of our main result, namely, the upper bound
αc(m)N , to non-random partitions are in order. We begin by noting that it is more difficult to
find solutions (i.e. zero-energy instances) a to the equations a · sl = 0 ∀l, in the case that the
partitions sl are random than in the case of correlated partitions. Hence since for α � αc(m)

we can guarantee the existence of those solutions for random partitions, they must exist for
correlated partitions as well. This leads to the conclusion that αc(m)N actually yields a lower
bound to the maximum number of perfect partitions that can be found for any arbitrary instance.
Of course, this bound becomes exact in the case of random partitions. Therefore, αc(m)N can
be viewed as a general and robust characteristic of the number partitioning problem, in the
sense that it does not depend on arbitrary assumptions about the instance realizations. As in
the neural networks case, the instance space analysis proposed in this paper can be extended
to virtually all optimization problems.
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